Atomistic Solution Models

Consider a system with N interacting particles and a number of energy states numbered with the j index

$$
\begin{aligned}
& \text { Partition Function } \quad Z=\sum_{j} \exp \left(-\frac{U_{j}}{k_{\mathrm{B}} T}\right) \\
& \mathrm{A}=-\mathrm{k}_{\mathrm{B}} \mathrm{~T} \ln (\mathrm{Z}) \quad G \approx-k_{\mathrm{B}} T \ln Z \quad \text { Relative to } \mathrm{T}=0 \mathrm{~K}
\end{aligned}
$$

Energy states will be degenerate, that is more than one state can have the same energy, then,

$$
Z=\sum_{i} \mathrm{~g}_{i} \exp \left(-\frac{U_{i}}{k_{\mathrm{B}} T}\right)
$$

Ideal Solution Model

$$
\begin{gathered}
U=N_{\mathrm{A}}\left\langle u_{\mathrm{A}}\right\rangle+N_{\mathrm{B}}\left\langle u_{\mathrm{B}}\right\rangle=U_{\mathrm{A}}+U_{\mathrm{B}} \\
Z=g \exp \left(-\frac{U}{k_{\mathrm{B}} T}\right)=\left(\frac{N!}{N_{A}!N_{B}!}\right) \exp \left(-\frac{U_{\mathrm{A}}+U_{\mathrm{B}}}{k_{\mathrm{B}} T}\right) \\
G \approx A=-k_{\mathrm{B}} T \ln Z=-k_{\mathrm{B}} T \ln \left(\frac{N!}{N_{\mathrm{A}}!N_{\mathrm{B}}!}\right)+U_{\mathrm{A}}+U_{\mathrm{B}} \\
\Delta_{\text {mix }} G=-k_{\mathrm{B}} T \ln \left(\frac{N!}{N_{\mathrm{A}}!N_{\mathrm{B}}!}\right) \quad \ln M!=M \ln M-M \text { for } M \operatorname{large} \quad \text { Sterling's Approximation } \\
\Delta_{\text {mix }} G=-k_{\mathrm{B}} T\left[\left(N_{\mathrm{A}}+N_{\mathrm{B}}\right) \ln N-N_{\mathrm{A}} \ln N_{\mathrm{A}}-N_{\mathrm{B}} \ln N_{\mathrm{B}}\right]+k_{\mathrm{B}} T\left(N-N_{\mathrm{A}}-N_{\mathrm{B}}\right) \\
=k_{\mathrm{B}} T\left[N_{\mathrm{A}} \ln \left(\frac{N_{\mathrm{A}}}{N}\right)+N_{\mathrm{B}} \ln \left(\frac{N_{\mathrm{B}}}{N}\right)\right]=k_{\mathrm{B}} T\left[N_{\mathrm{A}} \ln x_{\mathrm{A}}+N_{\mathrm{B}} \ln x_{\mathrm{B}}\right] \\
\text { Figure 9.1 Two-dimensional latice model fora solution of two different atoms of similar } \\
\text { radius. }
\end{gathered}
$$

Ideal Solution Model

$$
\begin{gathered}
\Delta_{\text {mix }} G=k_{\mathrm{B}} T\left[N_{\mathrm{A}} \ln x_{\mathrm{A}}+N_{\mathrm{B}} \ln x_{\mathrm{B}}\right] \\
\Delta_{\text {mix }} G_{\mathrm{m}}=R T\left[x_{\mathrm{A}} \ln x_{\mathrm{A}}+x_{\mathrm{B}} \ln x_{\mathrm{B}}\right] \\
\Delta_{\text {mix }} S_{\mathrm{m}}=-\left(\frac{\partial \Delta_{\text {mix }} G_{\mathrm{m}}}{\partial T}\right)_{p}=-R\left[x_{\mathrm{A}} \ln x_{\mathrm{A}}+x_{\mathrm{B}} \ln x_{\mathrm{B}}\right]
\end{gathered}
$$

dimensional latice model for asolution of two different atoms of similar

$$
\Delta_{\operatorname{mix}} H_{\mathrm{m}}=\Delta_{\operatorname{mix}} G_{\mathrm{m}}+T \Delta_{\operatorname{mix}} S_{\mathrm{m}}=0
$$

Regular Solution Model

Coordination number " z " $\mathrm{z}=6$ for Cartesian Coordinates
$\mathrm{N}_{\mathrm{AA}}=$ number of A-A contacts with an energy of u_{AA}
Lattice has N sites
Total number of pairs is $\mathrm{zN} / 2$
Average energy of pure A is $\mathrm{U}_{\mathrm{A}}=\mathrm{zN}_{\mathrm{A}} \mathrm{u}_{\mathrm{AA}} / 2$
For A atoms there are zN_{A} pairwise interactions made up of 2 interactions for each A and one for each AB

$$
\begin{gathered}
z N_{\mathrm{A}}=2 N_{\mathrm{AA}}+N_{\mathrm{AB}} \\
\frac{1}{2} z\left(N_{\mathrm{B}}+N_{\mathrm{A}}\right)=N_{\mathrm{AA}}+N_{\mathrm{BB}}+N_{\mathrm{AB}} \\
U=N_{\mathrm{AA}} u_{\mathrm{AA}}+N_{\mathrm{BB}} u_{\mathrm{BB}}+N_{\mathrm{AB}} u_{\mathrm{AB}} \\
U=\frac{1}{2}\left(z N_{\mathrm{A}}-N_{\mathrm{AB}}\right) u_{\mathrm{AA}}+\frac{1}{2}\left(z N_{\mathrm{B}}-N_{\mathrm{AB}}\right) u_{\mathrm{BB}}+N_{\mathrm{AB}} u_{\mathrm{AB}} \\
=\frac{1}{2} z N_{\mathrm{A}} u_{\mathrm{AA}}+\frac{1}{2} z N_{\mathrm{B}} u_{\mathrm{BB}}+N_{\mathrm{AB}}\left[u_{\mathrm{AB}}-\frac{1}{2}\left(u_{\mathrm{AA}}+u_{\mathrm{BB}}\right)\right]
\end{gathered}
$$

Regular Solution Model

$$
\begin{gathered}
U=\frac{1}{2}\left(z N_{\mathrm{A}}-N_{\mathrm{AB}}\right) u_{\mathrm{AA}}+\frac{1}{2}\left(z N_{\mathrm{B}}-N_{\mathrm{AB}}\right) u_{\mathrm{BB}}+N_{\mathrm{AB}} u_{\mathrm{AB}} \\
=\frac{1}{2} z N_{\mathrm{A}} u_{\mathrm{AA}}+\frac{1}{2} z N_{\mathrm{B}} u_{\mathrm{BB}}+N_{\mathrm{AB}}\left[u_{\mathrm{AB}}-\frac{1}{2}\left(u_{\mathrm{AA}}+u_{\mathrm{BB}}\right)\right] \\
\omega_{\mathrm{AB}}=u_{\mathrm{AB}}-\frac{1}{2}\left(u_{\mathrm{AA}}+u_{\mathrm{BB}}\right) \\
U=U_{\mathrm{A}}+U_{\mathrm{B}}+N_{\mathrm{AB}} \omega_{\mathrm{AB}} \\
Z=g \exp \left(-\frac{U}{k_{\mathrm{B}} T}\right)=\frac{N!}{N_{\mathrm{A}}!N_{\mathrm{B}}!} \exp \left[-\frac{\left[U_{\mathrm{A}}+U_{\mathrm{B}}+\left(z N_{\mathrm{A}} N_{\mathrm{B}} / N\right) \omega_{\mathrm{AB}}\right]}{k_{\mathrm{B}} T}\right] \\
N_{\mathrm{AB}}=\frac{1}{2} z N 2 x_{\mathrm{A}} x_{\mathrm{B}}=z\left(\frac{N_{\mathrm{A}} N_{\mathrm{B}}}{N}\right) \\
G \approx A=-k_{\mathrm{B}} T \ln \left[\frac{N!}{N_{\mathrm{A}}!N_{\mathrm{B}}!}\right]+U_{\mathrm{A}}+U_{\mathrm{B}}+\frac{z N_{\mathrm{A}} N_{\mathrm{B}}}{N} \omega_{\mathrm{AB}}
\end{gathered}
$$

Regular Solution Model

$$
\begin{gathered}
G \approx A=-k_{\mathrm{B}} T \ln \left[\frac{N!}{N_{\mathrm{A}}!N_{\mathrm{B}}!}\right]+U_{\mathrm{A}}+U_{\mathrm{B}}+\frac{z N_{\mathrm{A}} N_{\mathrm{B}}}{N} \omega_{\mathrm{AB}} \\
\Delta_{\operatorname{mix}} G_{\mathrm{m}}=R T\left[x_{\mathrm{A}} \ln x_{\mathrm{A}}+x_{\mathrm{B}} \ln x_{\mathrm{B}}\right]+\Omega_{\mathrm{AB}} x_{\mathrm{A}} x_{\mathrm{B}} \\
\Omega_{\mathrm{AB}}=z L \omega_{\mathrm{AB}} \\
\Delta_{\text {mix }} H_{\mathrm{m}} \approx \Delta_{\text {mix }} U_{\mathrm{m}}=\Omega_{\mathrm{AB}} x_{\mathrm{A}} x_{\mathrm{B}} \\
\mu_{\mathrm{A}} \sim \mathrm{dG} / \mathrm{dx}_{\mathrm{A}} \\
\mu_{\mathrm{A}}-\mu_{\mathrm{A}}^{\mathrm{o}}=R T \ln a_{\mathrm{A}}=R T \ln x_{\mathrm{A}}+\Omega_{\mathrm{AB}} x_{\mathrm{B}}^{2} \\
R T \ln \gamma_{\mathrm{A}}=\Omega_{\mathrm{AB}} x_{\mathrm{B}}^{2}
\end{gathered}
$$

Figure 3.10 The molar Gibbs energy of mixing of a regular solution A-B for different values of $\Omega / R T$.

$$
x_{\mathrm{B}} \quad \mu_{\mathrm{A}}-\mu_{\mathrm{A}}^{\mathrm{o}}=R T \ln a_{\mathrm{A}}=R T \ln x_{\mathrm{A}}+\Omega_{\mathrm{AB}} x_{\mathrm{B}}^{2} \quad x_{\mathrm{B}}
$$

Figure 9.2 (a) a_{A} and (b) $\ln \gamma_{\mathrm{A}} R T \ln \gamma_{\mathrm{A}}=\Omega_{\mathrm{AB}} x_{\mathrm{B}}^{2}$ on A-B as a function of composition for selected values of $\Omega_{\mathrm{AR}} / R T$.

Entropy of Mixing

$$
\begin{array}{r}
\Delta_{\text {mix }} G_{\mathrm{m}}=R T\left[x_{\mathrm{A}} \ln x_{\mathrm{A}}+x_{\mathrm{B}} \ln x_{\mathrm{B}}\right]+\Omega_{\mathrm{AB}} x_{\mathrm{A}} x_{\mathrm{B}} \\
\Omega_{A B}=z N_{A} \omega_{A B}
\end{array}
$$

A) Here we consider a combinatorial entropy of mixing and a binary enthalpy of mixing

B) A change in organization can also occur which leads to an additional entropic term

$$
\begin{aligned}
& \Omega_{A B}=z N_{A}\left(\omega_{A B}-T \eta_{A B}\right) \\
& =z N_{A} \omega_{A B}\left(1-\frac{T}{\tau}\right)
\end{aligned}
$$

Where $\tau=\frac{\omega_{A B}}{\eta_{A B}}$, a critical temperature

$$
\mathrm{T}_{\mathrm{f}}=\Delta \mathrm{H}_{\mathrm{f}} / \Delta \mathrm{S}_{\mathrm{f}}
$$

Vibrational Contribution

$$
\begin{array}{r}
Z=g \exp \left(-\frac{U}{k_{\mathrm{B}} T}\right)=\left(\frac{N!}{N_{A}!N_{B}!}\right) \exp \left(-\frac{U_{\mathrm{A}}+U_{\mathrm{B}}}{k_{\mathrm{B}} T}\right) \quad \begin{array}{l}
Z=g Z_{\mathrm{A}}^{N_{\mathrm{A}}} Z_{\mathrm{B}}^{N_{\mathrm{B}}} \exp \left(-\frac{U^{\prime}}{k_{\mathrm{B}} T}\right) \\
\mathrm{Z}_{\mathrm{A}} \text { is vibrational part } \quad \mathrm{G}_{\mathrm{A}}=\mathrm{N}_{\mathrm{A}} \ln \mathrm{Z}_{\mathrm{A}}=\ln \mathrm{Z}_{\mathrm{A}}{ }^{\mathrm{NA}} \\
\mathrm{U} \prime \text { is internal energy minus vibrational part }
\end{array} \\
G \approx-k_{\mathrm{B}} T \ln Z \approx U^{\prime}-k_{\mathrm{B}} T \ln g-k_{\mathrm{B}} T \ln Z_{\mathrm{A}}^{N_{\mathrm{A}}} Z_{\mathrm{B}}^{N_{\mathrm{B}}}
\end{array}
$$

$\mathrm{G}=\mathrm{H}-\mathrm{TS}$ so last term is the non-configurational (non-combinatorial) entropic terms

$$
\begin{gathered}
\Delta_{\text {mix }}^{\mathrm{conf}} S=L k_{\mathrm{B}} \ln g=R \ln g \\
\Delta_{\text {mix }}^{\mathrm{non}-\operatorname{conf}} S_{\mathrm{m}}=k_{\mathrm{B}} L\left(\ln Z_{\mathrm{A}}^{N_{\mathrm{A}}}+\ln Z_{\mathrm{B}}^{N_{\mathrm{B}}}\right) \approx z L x_{\mathrm{A}} x_{\mathrm{B}} \eta_{\mathrm{AB}}
\end{gathered}
$$

Hildebrandt type parameter for vibrational contributions

Excess molar Gibbs energy of mixing for quasi-regular solution

$$
\Delta_{\mathrm{mix}}^{\mathrm{exc}} G_{\mathrm{m}}=z L x_{\mathrm{A}} x_{\mathrm{B}}\left(\omega_{\mathrm{AB}}-T \eta_{\mathrm{AB}}\right)
$$

$\mathrm{G}=\mathrm{H}-\mathrm{TS}$ so first term is enthalpic, second is entropic

$$
\Delta_{\text {mix }}^{\text {exc }} G_{\mathrm{m}}=x_{\mathrm{A}} x_{\mathrm{B}} \Omega_{\mathrm{AB}}\left(1-\frac{T}{\tau}\right) \quad \begin{aligned}
& \tau \text { is a characteristic } \\
& \text { temperature, when } \mathrm{T}=\tau \text { ideal } \\
& \text { solution behavior is seen }
\end{aligned}
$$

Figure 9.3 $\ln \gamma_{\mathrm{A}}$ of a quasi-regular solution $\mathrm{A}-\mathrm{B}$ for $x_{\mathrm{A}}=x_{\mathrm{B}}=0.5$ as a function of temperature for selected values of Ω_{AB}.

Figure 9.3 $\ln \gamma_{\mathrm{A}}$ of a quasi-regular solution $\mathrm{A}-\mathrm{B}$ for $x_{\mathrm{A}}=x_{\mathrm{B}}=0.5$ as a function of temperature for selected values of Ω_{AB}.

Mean Field (what we have considered) Interactions are random, there is no structuring
Specific Interactions Interactions are not random, there is identity between interacting pairs
Coulombic Interaction for instance

Correlations

Dilute: Ideal behavior, there are no interactions

Semi-dilute: weak or strong interactions are possible

With weak interactions the system can be treated with a "mean field". No correlation is observed, we can use the second virial coefficient and Hildebrand Model

With strong interactions we need to use detailed information about interactions, correlation function or other models

Virial Coefficient Approach for Weak Interactions (Mean Field)

Consider that two materials mix, A is matrix and B is diluent
B behaves like an ideal gas in A when B is dilute
$P=\rho R T$
The presence of B creates a pressure called an osmotic pressure Π
This pressure can be measured for particles in a solution such as proteins in water
At higher concentrations with a mean-field we can use a virial expansion to describe the pressure
$\Pi=\rho R T\left(1+A_{2} \rho+A_{3} \rho^{2}+A_{4} \rho^{3}+\ldots\right)$ Where A_{2} is the second virial coefficient and reflects binary interactions in a mean field
By comparison with the Van der Waals equation of state where $v=1 / \rho \quad P=\frac{R T}{(v-b)}-\frac{a}{v^{2}}$
$A_{2}=b-a / R T$ where " b " is the "excluded volume" and "a" is the attractive interaction potential for B's
$\mathrm{P} / \rho=$ energy $\sim \rho \mathrm{RT} \mathrm{A}_{2}=\rho(\mathrm{RT} \mathrm{b}-\mathrm{a})$

$$
\Delta_{\operatorname{mix}}^{\mathrm{exc}} G_{\mathrm{m}}=x_{\mathrm{A}} x_{\mathrm{B}} \Omega_{\mathrm{AB}}\left(1-\frac{T}{\tau}\right)
$$

Virial Coefficient Approach for Weak Interactions (Mean Field)

$$
\begin{array}{ll}
\mathrm{P} / \rho=\text { energy } \sim \rho \mathrm{RT} \mathrm{~A}_{2}=\rho(\mathrm{RT} \mathrm{~b}-\mathrm{a}) & \Delta_{\text {mix }}^{\text {exc }} G_{\mathrm{m}}=x_{\mathrm{A}} x_{\mathrm{B}} \Omega_{\mathrm{AB}}\left(1-\frac{T}{\tau}\right) \\
& \\
\begin{array}{l}
\text { Dilute: Ideal behavior, there } \\
\text { are no interactions }
\end{array} & \begin{array}{l}
\text { Dilute: Ideal behavior, } \\
\text { there are no interactions }
\end{array} \\
\text { Semi-Dilute } & \text { Semi-dilute } \\
\mathrm{A}_{2}=0 \text { Ideal/critical point } & \Omega=0 \text { Ideal } \\
\mathrm{A}_{2}>0 \text { Miscible } & \Omega<0 \text { Miscible } \\
\mathrm{A}_{2}<0 \text { Immiscible } & \Omega>0 \text { Immiscible } \\
& \\
\mathrm{T}=\mathrm{a} /(\mathrm{bR}) \text { Ideal } & \mathrm{T}=\tau \text { Ideal } \\
\mathrm{T}<\mathrm{a} / \mathrm{bT} \quad \text { Miscible } & \mathrm{T}>\tau \text { Miscible } \\
\mathrm{T}>\mathrm{a} / \mathrm{bT} \quad \text { Immiscible } & \mathrm{T}<\tau \text { Immiscible }
\end{array}
$$

A. How to deal with more than (h(r) or g(r)) binary interactions c(r)

Ornstein and Zernike function

Correlation Function, h(r)
$h(r)=c(r)+\rho \int c\left(\left|\vec{r}-\overrightarrow{r^{\prime}}\right|\right) h\left(r^{\prime}\right) \mathrm{d}^{3} \overrightarrow{r^{\prime}}$

A recursive relationship.
Requires a closure relationship to find a solution.
is the sum of the direct binary correlations, $c(r)$, plus the effect of higher order interactions, expressed as a convolution of $h(r)$ and $c(r)$ over all distances r. Here, ρ indicates the number density of particles

Closure relationships: Random Phase Approximation (RPA) $\rho=>0$
Percus-Yevick Approximation (complex)
Born-Green Approximation (simpler)

Strong Interactions (Specific Interactions)

Ornstein and Zernike function

Correlation Function, h(r)
$h(r)=c(r)+\rho \int c\left(\left|\vec{r}-\overrightarrow{r^{\prime}}\right|\right) h\left(r^{\prime}\right) \mathrm{d}^{3} \overrightarrow{r^{\prime}} \quad \begin{aligned} & \text { A recursive relationship. } \\ & \text { Requires a closure relationship to find a solution. }\end{aligned}$
Fourier transform of the OZ function; a convolution becomes a product.

$$
\begin{aligned}
& \hat{h}(\mathbf{k})=\hat{c}(\mathbf{k})+\rho \hat{h}(\mathbf{k}) \hat{c}(\mathbf{k}) \\
& \hat{c}(\mathbf{k})=\frac{\hat{h}(\mathbf{k})}{1+\rho \hat{h}(\mathbf{k})} \quad \text { and } \quad \hat{h}(\mathbf{k})=\frac{\hat{c}(\mathbf{k})}{1-\rho \hat{c}(\mathbf{k})}
\end{aligned}
$$

Fourier Transform of a structural correlation function is the scattered intensity which is composed of a form factor $\mathrm{F}^{2}(\mathrm{q})$ and a structure factor $\mathrm{S}(\mathrm{q})$. If we measure a dilute system with no correlations $\mathrm{I}_{0}(\mathrm{q})$ and if $\mathrm{I}(\mathrm{q})=\mathrm{S}(\mathrm{q}) \mathrm{F}^{2}(\mathrm{q})=\mathrm{S}(\mathrm{q}) \mathrm{I}_{0}(\mathrm{q})\left(\phi / \phi_{0}\right)$

We can assume a model for $\mathrm{c}(\mathrm{k})$ and calculate $\mathrm{S}(\mathrm{q})=\mathrm{I}(\mathrm{q}) / \mathrm{I}_{0}(\mathrm{q})\left(\phi_{0} / \phi\right)$ Structure factor (the peak part of scattering)

Correlations

Dilute: Ideal behavior, there are no interactions

Semi-dilute: weak or strong interactions are possible

With weak interactions the system can be treated with a "mean field". No correlation is observed, we can use the second virial coefficient and Hildebrand Model

With strong interactions we need to use detailed information about interactions, correlation function or other models

Strong Interactions (Specific Interactions)

Ornstein and Zernike function
Correlation Function, $\mathrm{h}(\mathrm{r})$

$$
h(r)=c(r)+\rho \int c\left(\mid \vec{r}-\overrightarrow{r^{\prime}}\right) h\left(r^{\prime}\right) \mathrm{d}^{3} \overrightarrow{r^{\prime}} \quad h\left(r_{12}\right)=c\left(r_{12}\right)+\rho \int d \mathbf{r}_{3} c\left(r_{13}\right) h\left(r_{23}\right)
$$

Percus-Yevick Approximation Closure.

$$
\begin{aligned}
& c(r)=e^{-\beta w(r)}-e^{-\beta[w(r)-u(r)]} \\
& \quad \begin{array}{l}
\text { Total RDF }=\text { RDF with no binary interaction } \\
\mathrm{g}(\mathrm{r}) \text { or } \mathrm{h}(\mathrm{r})
\end{array}
\end{aligned}
$$

Use a function $y(r)=e^{\beta(u(r)-\omega(r))}$ then

$$
\mathrm{g}(\mathrm{r})=\mathrm{h}(\mathrm{r})
$$

Use this in the OZ equation yields the RDF with no binary interactions

$$
y\left(r_{12}\right)=1+\rho \int f\left(r_{13}\right) y\left(r_{13}\right) h\left(r_{23}\right) d \mathbf{r}_{3}
$$

B. How to deal with more than binary interactions BBGKY hierarchy (Bogoliubov-Born-Green-Kirkwood-Yvon)

$$
\left.\begin{array}{ll}
f_{N}=f_{N}\left(\mathbf{q}_{1} \ldots \mathbf{q}_{N}, \mathbf{p}_{1} \ldots \mathbf{p}_{N}, t\right) & \begin{array}{l}
\text { Probability density function in position, } \\
\mathrm{q}_{\mathrm{i}},
\end{array} \\
\frac{\partial f_{N}}{\partial t}+\sum_{i=1}^{N} \frac{\mathbf{p}_{i}}{m} \frac{\partial f_{N}}{\partial \mathbf{q}_{i}}+\sum_{i=1}^{N} \mathbf{F}_{i} \frac{\partial f_{N}}{\partial \mathbf{p}_{i}}=0 & \text { Liouville Equation }
\end{array}\right\} \begin{aligned}
& \text { Force acting on particle " } \mathrm{i} " \\
& \mathbf{F}_{i}=-\sum_{j=1 \neq i}^{N} \frac{\partial \Phi_{i j}}{\partial \mathbf{q}_{i}}-\frac{\partial \Phi_{i}^{\mathrm{ext}}}{\partial \mathbf{q}_{i}} \quad \begin{array}{l}
\Phi_{i j}\left(\mathbf{q}_{i}, \mathbf{q}_{j}\right) \text { is the par particle potential } \\
\Phi^{\text {ext }}\left(\mathbf{q}_{i}\right) \text { is the external-field potential }
\end{array}
\end{aligned}
$$

Integrate the Liouville Equation yields a chain of equations relating binary interactions with ternary interactions; ternary interactions with quaternary interactions etc. This can not be solved unless a model is used for $\mathrm{f}_{\mathrm{s}+1}$.

Strong Interactions (Specific Interactions)

Ornstein and Zernike function
Correlation Function, h(r)
$h(r)=c(r)+\rho \int c\left(\left|\vec{r}-\overrightarrow{r^{\prime}}\right|\right) h\left(r^{\prime}\right) \mathrm{d}^{3} \vec{r}^{3} \quad \begin{aligned} & \text { A recursive relationship. } \\ & \text { Requires a closure relationship to find a solution. }\end{aligned}$
is the sum of the direct binary correlations, $c(r)$, plus the effect of higher order interactions, expressed as a convolution of $h(r)$ and $c(r)$ over all distances r. Here, ρ indicates the number density of particles/nanoaggregates.

Closure relationships: Random Phase Approximation (RPA) $\rho=>0$
Percus-Yevick Approximation; Born-Green Approximation

$$
\begin{aligned}
& \frac{U}{N}=\frac{3}{2} k_{B} T+\frac{\rho}{2} \int \mathrm{~d} \mathbf{r} g(r) v(r), P=\rho k_{B} T-\frac{\rho^{2}}{6} \int \mathrm{~d} \mathbf{r} g(r) r \frac{\mathrm{~d} v(r)}{\mathrm{d} r} \\
& \mathrm{P}=\rho \mathrm{RT}\left(1+\mathrm{A}_{2} \rho+\mathrm{A}_{3} \rho^{2}+\mathrm{A}_{4} \rho^{3}+\ldots\right)
\end{aligned}
$$

$S(\mathbf{k})=1+\rho \int \mathrm{d} \mathbf{r}(g(\mathbf{r})-1) \exp (i \mathbf{k} . \mathbf{r})$.
For a square well potential: $\mathrm{A}_{2}=2 \pi N_{A} \int_{0}^{\infty}\left(1-\exp \left(-\frac{u}{k T}\right)\right) r^{2} d r$

Figure 2.1: The radial distribution function for a Lennard-Jones fluid, at a reduced temperature $k_{B} T / \epsilon=2.0$ and fluid density $\rho \sigma_{L J}^{3}=0.8$, calculated using the Percus-Yevick closure to the Ornstein-Zernike equation.

$$
S(\mathbf{k})=1+\rho \int \mathrm{d} \mathbf{r}(g(\mathbf{r})-1) \exp (i \mathbf{k} . \mathbf{r})
$$

$\mathrm{S}(\mathrm{q})=\phi_{0} \mathrm{I}(\mathrm{q}) /\left(\phi \mathrm{I}_{0}(\mathrm{q})\right)$
Structure factor

FIG. 3.2. Structure factor of liquid sodium near the normal melting temperature. The points are experimental x -ray scattering results ${ }^{8}$ and the curve is obtained from a Monte Carlo calculation ${ }^{9}$ for the r^{-4} potential under the same thermodynamic conditions.

Strong Interactions

Strong Interactions

Figure 7.13. The radial distribution function for the hard-sphere fluid at a packing fraction of $\mathrm{b} \rho=0.4$.

Weak Interactions

Strong Interactions

$$
S(\mathbf{k})=1+\rho \int \mathrm{d} \mathbf{r}(g(\mathbf{r})-1) \exp (i \mathbf{k} . \mathbf{r})
$$

$I(q, \phi)=I\left(q, \phi_{0}\right) S(q, \phi) \phi / \phi_{0}$
$A_{2} \sim v$

Models for Interactions Based on a Mean Field Approach

There are many models, the book mentions the Quasi-Chemical Model which is used in Calphad and ThermoCalc Elliot and Lira give a reasonable discussion of various models in Chapters 7, 11, 12
Chapter 7
Van der Waals: Includes excluded volume, " b ", and attractive interaction "a"

$$
P=\frac{R T}{V-b}-\frac{a}{V^{2}}=\frac{\rho R T}{1-b \rho}-a \rho^{2} \quad a \equiv \frac{27}{64} \frac{R^{2} T_{c}^{2}}{P_{c}} \quad ; \quad b \equiv \frac{R T_{c}}{8 P_{c}}
$$

Peng-Robinson: Attractive interaction term is more complicated and includes the acentric factor ω. "a" has a temperature dependence.

$$
P=\frac{R T \rho}{(1-b \rho)}-\frac{a \rho^{2}}{1+2 b \rho-b^{2} \rho^{2}}
$$

$$
\begin{array}{rlr}
a \equiv a_{c} \alpha ; \quad a_{c} \equiv 0.45723553 \frac{R^{2} T_{c}^{2}}{P_{c}} & b \equiv 0.07779607 R \frac{T_{c}}{P_{c}} \\
& \alpha \equiv\left[1+\kappa\left(1-\sqrt{T_{r}}\right)\right]^{2} & \kappa \equiv 0.37464+1.54226 \omega-0.26992 \omega^{2}
\end{array}
$$

These equations have a cubic form:

$$
Z^{3}-(1-B) Z^{2}+\left(A-3 B^{2}-2 B\right) Z-\left(A B-B^{2}-B^{3}\right)=0
$$

$$
\begin{aligned}
& A \equiv a P / R^{2} T^{2} \\
& B \equiv b P / R T
\end{aligned}
$$

Hard core model for Van der Waals

$$
P=\frac{R T}{V-b}-\frac{a}{V^{2}}=\frac{\rho R T}{1-b \rho}-a \rho^{2} \quad \mathrm{Z}=\mathrm{PV} / \mathrm{RT}=1 /(1-\mathrm{b} \rho)-(\mathrm{a} / \mathrm{RT}) \rho
$$

Hard core no attractive interaction, $\eta_{\mathrm{P}}=\mathrm{b} \rho$ $Z^{H S}=1 /\left(1-\eta_{P}\right)$; the van der Waals model $Z^{H S}=\left(1+2 \eta_{P}\right) /\left(1-2 \eta_{P}\right)$; the Scott model $Z^{H S}=1+4 \eta_{P} /\left(1-1.9 \eta_{P}\right)$; the ESD model $Z^{H S}=1+4 \eta_{P}\left(1-\eta_{P} / 2\right) /\left(1-\eta_{P}\right)^{3}$; the Carnahan-Starling model

Compare with Molecular Dynamics (o) for Hard Spheres E\&W

Margulis one-parameter Model

$$
\begin{aligned}
& \frac{G^{E}}{R T}=A_{12} x_{1} x_{2} \\
& \ln \gamma_{i}=A_{12}\left(1-x_{i}\right)^{2}
\end{aligned}
$$

Hildebrand Model

$$
\Delta_{\operatorname{mix}}^{\mathrm{exc}} G_{\mathrm{m}}=x_{\mathrm{A}} x_{\mathrm{B}} \Omega_{\mathrm{AB}}
$$

Margulis acid-base Model

acidity parameter, α, and basicity parameter, β.

(b)

(c)

Figure 11.7. Observations about complexation. (a) A mixture of acid with base suggests favorable interactions, as in acetone + chloroform. (b) Hydrogen bonding leads to unfavorable interactions when one component associates strongly and the other is inert, as in isooctane + water. (c) Hydrogen bonding solutions can also be ideal solutions if both components have similar acidity and basicity, as in methanol + ethanol.

$$
A_{12}=\left(\alpha_{2}-\alpha_{1}\right)\left(\beta_{2}-\beta_{1}\right)\left(V_{1}+V_{2}\right) /(4 R T)
$$

Table 11.1. Acidity (α) and Basicity (β) Parameters in $\left(\mathrm{J} / \mathrm{cm}^{3}\right)^{1 / 2}$ and Molar Volumes ($\mathrm{cm}^{3} / \mathrm{mol}$) for Various Substances as liquids at $298 \mathrm{~K}^{\mathrm{a}}$

Compound	α	β	ν^{2}
Acetone	0	11.14	73.4
Benzene	0.63	2.24	89.7
Chloroform	5.80	0.12	80.5
Ethanol	12.58	13.29	58.2
n-Hexane	0	0	130.3
Isooctane	0	0	162.9
Isopropanol	9.23	11.86	76.8
Methanol	17.43	14.49	40.5
MEK	0	9.70	90.1
Water	50.13	15.06	18.0

Redlich-Kister Model (asymmetric phase diagrams)

$$
\frac{G^{E}}{R T}=x_{1} x_{2}\left(B_{12}+C_{12}\left(x_{1}-x_{2}\right)+D_{12}\left(x_{1}-x_{2}\right)^{2}+\ldots\right)
$$

Two-parameter Margulis Model

$$
\begin{aligned}
\frac{G^{E}}{R T}=x_{1} x_{2}\left(A_{21} x_{1}+A_{12} x_{2}\right) & A_{21}=B_{12}+C_{12}, A_{21}=B_{12}-C_{12} \\
\ln \gamma_{1}=x_{2}^{2}\left[A_{12}+2\left(A_{21}-A_{12}\right) x_{1}\right] & \ln \gamma_{2}=x_{12}^{2}\left[A_{21}+2\left(A_{12}-A_{21}\right) x_{2}\right] \\
A_{12}=\left(2-\frac{1}{x_{2}}\right) \frac{\ln \gamma_{1}}{x_{2}}+\frac{2 \ln \gamma_{2}}{x_{1}} & A_{21}=\left(2-\frac{1}{x_{1}}\right) \frac{\ln \gamma_{2}}{x_{1}}+\frac{2 \ln \gamma_{1}}{x_{2}}
\end{aligned}
$$

Model	$G^{E} / R T$	$\operatorname{In} \gamma_{1}$	Simplification
Redlich-Kister	$x_{1} x_{2}\left[B_{12}+C_{12}\left(x_{1}-x_{2}\right)+\right.$ $\left.D_{12}\left(x_{1}-x_{2}\right)^{2}+\ldots\right]$	$c f$. Practice problem P11.2	-
Margules two- parameter	$x_{1} x_{2}\left(A_{21} x_{1}+A_{12} x_{2}\right)$	$x_{2}{ }^{2}\left[A_{12}+2\left(A_{21}-A_{12}\right) x_{1}\right]$	$D_{12}=0 ; A_{21}=B_{12}+C_{12} ;$ $A_{21}=B_{12}-C_{12}$
Margules one- parameter	$x_{1} x_{2} A_{12}$	$x_{2}{ }^{2} A_{12}$	$C_{12}=D_{12}=0 ;$ $A_{12}=A_{12}=B_{12}$.
Ideal solution	0	0	$B_{12}=C_{12}=D_{12}=0$

> Van der Waals Models $\quad P=\frac{R T}{(v-b)}-\frac{a}{v^{2}}$
> $b=\sum_{i} x_{i} b_{i} \quad a=x_{1}^{2} a_{11}+2 x_{1} x_{2} a_{12}+x_{2}^{2} a_{22}=\sum \sum x_{i} x_{j} a_{i j}$ $a_{12}=\left(1-k_{12}\right)\left(a_{11} a_{22}\right)^{1 / 2}$

Consider 11, 22, and 12 interactions

Regular Solution Models

$$
G^{E}=U^{E}+P V^{E}-T S^{E}
$$

Ignore PV which is small $\mathrm{G} \sim \mathrm{A}$
If $V \sim S \sim 0$ then $G=U$
This is a regular solution

$$
\begin{array}{cl}
-\mathrm{SUV} & \mathrm{G}=\mathrm{H}-\mathrm{ST} \\
\mathrm{H} \mathrm{~A} & \mathrm{H}=\mathrm{U}+\mathrm{PV} \\
\text {-pGT } & \text { So }
\end{array}
$$

$$
U^{E}=x_{1} \frac{a_{11}}{V_{1}}+x_{2} \frac{a_{22}}{V_{2}}-\left(\frac{x_{1}^{2} a_{11}+2 x_{1} x_{2} a_{12}+x_{2}^{2} a_{22}}{x_{1} V_{1}+x_{2} V_{2}}\right)
$$

For Symmetric MeanField Models there are two main problems, organizational entropy change on mixing and changes in volume on mixing

Van Laar Model

Consider Lattice sites do not have the same volume, $\mathrm{V}_{1}, \mathrm{~V}_{\mathbf{2}}$
$U^{E}=\frac{x_{1} x_{2} V_{1} V_{2}}{x_{1} V_{1}+x_{2} V_{2}} Q$ where $Q \equiv\left(\frac{a_{11}}{V_{1}^{2}}+\frac{a_{22}}{V_{2}^{2}}-2 \frac{a_{12}}{V_{1} V_{2}}\right)$

Van Laar Model

$$
U^{E}=\frac{x_{1} x_{2} V_{1} V_{2}}{x_{1} V_{1}+x_{2} V_{2}} Q \quad \text { where } Q \equiv\left(\frac{a_{11}}{V_{1}^{2}}+\frac{a_{22}}{V_{2}^{2}}-2 \frac{a_{12}}{V_{1} V_{2}}\right)
$$

Include asymmetry

$$
\begin{aligned}
& A_{12}=\frac{Q V_{1}}{R T} ; \quad A_{21}=\frac{Q V_{2}}{R T} ; \quad \frac{A_{12}}{A_{21}}=\frac{V_{1}}{V_{2}} \\
& \frac{G^{E}}{R T}=\frac{U^{E}}{R T}=\frac{A_{12} A_{21} x_{1} x_{2}}{\left(x_{1} A_{12}+x_{2} A_{21}\right)}
\end{aligned}
$$

$$
\ln \gamma_{1}=\frac{A_{12}}{\left[1+\frac{A_{12} x_{1}}{A_{21} x_{2}}\right]^{2}}
$$

$$
\ln \gamma_{2}=\frac{A_{21}}{\left[1+\frac{A_{21} x_{2}}{A_{12} x_{1}}\right]^{2}}
$$

$$
A_{12}=\left(\ln \gamma_{1}\right)\left[1+\frac{x_{2} \ln \gamma_{2}}{x_{1} \ln \gamma_{1}}\right]^{2} \quad A_{21}=\left(\ln \gamma_{2}\right)\left[1+\frac{x_{1} \ln \gamma_{1}}{x_{2} \ln \gamma_{2}}\right]^{2}
$$

$$
\begin{aligned}
& \text { Scatchard-Hildebrand Theory } \quad a_{12}=\left(1-k_{12}\right)\left(a_{11} a_{22}\right)^{1 / 2} \\
& \text { Theory based on Volume Fraction rather than Mole Fraction } \\
& k_{12}=0 \quad a_{12}=\sqrt{a_{11} a_{22}} \\
& U^{E}=\frac{x_{1} x_{2} V_{1} V_{2}}{x_{1} V_{1}+x_{2} V_{2}}\left(\frac{a_{11}}{V_{1}^{2}}+\frac{a_{22}}{V_{2}^{2}}-2 \sqrt{\frac{a_{11}}{V_{1}^{2}} \frac{a_{22}}{V_{2}^{2}}}\right)=\frac{x_{1} x_{2} V_{1} V_{2}}{x_{1} V_{1}+x_{2} V_{2}}\left(\frac{\sqrt{a_{11}}}{V_{1}}-\frac{\sqrt{a_{22}}}{V_{2}}\right)^{2} \\
& U^{E}=\Phi_{1} \Phi_{2}\left(\delta_{1}-\delta_{2}\right)^{2}\left(x_{1} V_{1}+x_{2} V_{2}\right) \\
& \delta=\text { Solubility Parameter } \\
& \begin{aligned}
\Phi_{i} & \equiv x_{i} V_{i} / \sum x_{i} V_{i} \quad \text { Volume Fraction } \\
\delta_{i} & \equiv \sqrt{a_{i i}} / V_{i} \quad \delta_{i} \equiv \sqrt{\frac{\Delta U_{i}^{\text {vap }}}{V_{i}}}=\sqrt{\frac{\Delta H_{i}^{v a p}-R T}{V_{i}}}
\end{aligned} \\
& \text { Cohesive Energy Density }
\end{aligned}
$$

Table 12.1. Solubility Parameters in $\left(J / \mathrm{cm}^{3}\right)^{1 / 2}$ and Molar Volumes $\left(\mathrm{cm}^{3} / \mathrm{mol}\right)$ for Various Substances as liquids at 298 K

1-Olefins	δ	V^{L}	Napthenics	δ	V^{L}	Aromatics	δ	V^{L}
1-pentene	14.11	109	cyclopentane	17.80	93	benzene	18.82	88
1-hexene	15.14	124	cyclohexane	16.77	107	toluene	18.20	106
1,3 butadiene	14.52	86	Decalin	18.00	156	ethylbenzene	18.00	122
Amines	δ	V^{L}	Ketones	δ	V^{L}	styrene	19.02	114
ammonia	33.34	28	acetone	20.25	73	n-propylbenzene	17.59	139
methyl amine	22.91	46	2-butanone	19.02	89	anthracene	20.25	145
ethyl amine	20.45	65	2-pentanone	17.80	106	phenanthrene	20.05	186
pyridine	29.86	80	2-heptanone	17.39	139	naphthalene	20.25	125
n-Alkanes	δ	V^{L}	Alcohols	δ	V^{L}	Ethers	δ	V
n-pentane	14.32	114	water	47.86	18	dimethyl ether	18.00	68
n-hexane	14.93	130	methanol	29.66	40	diethyl ether	15.14	103
n-heptane	15.14	145	ethanol	25.57	58	dipropyl ether	15.95	136
n-octane	15.55	162	n-propanol	21.48	74	furan	19.23	72
n-nonane	15.95	177	n-butanol	27.82	91	THF	18.61	81
n-decane	16.16	194	n-hexanol	21.89	124			
			n-dodecanol	20.25	222			

Scatchard-Hildebrand Theory

$$
\begin{aligned}
G^{E}= & U^{E}=\Phi_{1} \Phi_{2}\left(\delta_{1}-\delta_{2}\right)^{2}\left(x_{1} V_{1}+x_{2} V_{2}\right) \\
& R T \ln \gamma_{1}=V_{1} \Phi_{2}^{2}\left(\delta_{1}-\delta_{2}\right)^{2} \\
& R T \ln \gamma_{2}=V_{2} \Phi_{1}^{2}\left(\delta_{1}-\delta_{2}\right)^{2}
\end{aligned}
$$

Scatchard-Hildebrand with Adjustable Parameter $a_{12}=\left(1-k_{12}\right)\left(a_{11} a_{22}\right)^{1 / 2}$

$$
\begin{gathered}
a_{12}=\sqrt{a_{11} a_{22}}\left(1-k_{12}\right) \\
R T \ln \gamma_{1}=V_{1} \Phi_{2}^{2}\left[\left(\delta_{1}-\delta_{2}\right)^{2}+2 k_{12} \delta_{1} \delta_{2}\right] \\
R T \ln \gamma_{2}=V_{2} \Phi_{1}^{2}\left[\left(\delta_{1}-\delta_{2}\right)^{2}+2 k_{12} \delta_{1} \delta_{2}\right]
\end{gathered}
$$

Flory-Huggins Model for Polymers

Point Masses have no volume
Real molecules have excluded volume
Only the available volume can be used to mix so the entropy of mixing should be modified

$$
\begin{gathered}
\bar{S}_{i}-S_{i}=R \ln \frac{V_{f, \text { mixture }}}{\underline{V}_{f, i}}=R \ln \frac{\left(n_{1} V_{1}+n_{2} V_{2}\right) \varpi}{\left(n_{i} V_{i}\right) \varpi}=-R \ln \Phi_{i} \\
\Delta S_{m i x}=S-\sum_{i} x_{i} S_{i}=\sum_{i} x_{i}\left(\bar{S}_{i}-S_{i}\right)=-R \sum_{i} x_{i} \ln \Phi_{i} \\
G^{E}=H^{\mathbf{L}}-T S^{E}=R T\left(x_{1} \ln \left(\Phi_{1} / x_{1}\right)+x_{2} \ln \left(\Phi_{2} / x_{2}\right)\right) \\
G^{E}=H^{E}-T S^{E}=R T\left(x_{1} \ln \left(\Phi_{1} / x_{1}\right)+x_{2} \ln \left(\Phi_{2} / x_{2}\right)\right)+\Phi_{1} \Phi_{2}\left(\delta_{1}-\delta_{2}\right)^{2}\left(x_{1} V_{1}+x_{2} V_{2}\right) \\
\ln \gamma_{1}=\ln \left(\Phi_{1} / x_{1}\right)+\left(1-\Phi_{1} / x_{1}\right)+\frac{V_{1}}{R T} \Phi_{2}^{2}\left(\delta_{1}-\delta_{2}\right)^{2} \\
\ln \gamma_{2}=\ln \left(\Phi_{2} / x_{2}\right)+\left(1-\Phi_{2} / x_{2}\right)+\frac{V_{2}}{R T} \Phi^{2}\left(\delta_{1}-\delta_{2}\right)^{2}
\end{gathered}
$$

Flory-Huggins Model for Polymers

$$
G^{E}=H^{E}-T S^{E}=R T\left(x_{1} \ln \left(\Phi_{1} / x_{1}\right)+x_{2} \ln \left(\Phi_{2} / x_{2}\right)\right)+\Phi_{1} \Phi_{2}\left(\delta_{1}-\delta_{2}\right)^{2}\left(x_{1} V_{1}+x_{2} V_{2}\right)
$$

$$
\begin{gathered}
G^{E=R T\left(x_{1} \ln \left(\Phi_{1} / x_{1}\right)+x_{2} \ln \left(\Phi_{2} / x_{2}\right)\right)+\Phi_{1} \Phi_{2}\left(x_{1}+x_{2} r\right) \chi R T} \\
\chi \equiv V_{l}\left(\delta_{1}-\delta_{1}\right)^{2} / R T \\
\mathbf{r}=\mathbf{v}_{2} / \mathbf{V}_{1} \quad 2 \text { is polymer }
\end{gathered}
$$

Account for Hydrogen Bonding

MOSCED Model (MOdified Separation of Cohesive Energy Density)

$$
\begin{aligned}
& \ln \gamma_{2}^{\infty}=\frac{V_{2}}{R T}\left[\left(\lambda_{2}-\lambda_{1}\right)^{2}+q_{1}^{2} q_{2}^{2} \frac{\left(\tau_{2}^{T}-\tau_{1}^{T}\right)^{2}}{\psi_{1}}+\frac{\left(\alpha_{2}^{T}-\alpha_{1}^{T}\right)\left(\beta_{2}^{T}-\beta_{1}^{T}\right)}{\xi_{1}}\right]+d_{12} \\
& d_{12}=1-\left(\frac{V_{2}}{V_{1}}\right)^{a a}+a a \ln \left(\frac{V_{2}}{V_{1}}\right) \\
& \text { Calculates the infinite dilution activity } \\
& \text { coefficient } \\
& \text { This is used in another model to fit parameters at } \\
& \text { infinite dilution to the MOSCED model } \\
& \text { Such as Redlich-Kister, van Laar, or below } \\
& \lambda_{i} \text { dispersion factor } \\
& \tau_{i} \text { is the polarity } \\
& q_{i} \text { is } .9 \text { to } 1 \\
& a a=0.953-0.002314\left(\left(\tau_{2}^{T}\right)^{2}+\alpha_{2}^{T} \beta_{2}^{T}\right) \\
& \alpha_{i}^{T}=\alpha_{i}\left(\frac{293}{T(K)}\right)^{0.8} ; \beta_{i}^{T}=\beta_{i}\left(\frac{293}{T(K)}\right)^{0.8} ; \tau_{i}^{T}=\tau_{i}\left(\frac{293}{T(K)}\right)^{0.4} \\
& \psi_{1}=P O L+0.002629 \alpha_{1}^{T} \beta_{1}^{T} \\
& \xi_{1}=0.68(P O L-1)+\left[3.24-2.4 \exp \left(-0.002687\left(\alpha_{1} \beta_{1}\right)^{1.5}\right)\right]^{(293 / T)^{2}} \\
& P O L=1+1.15 q_{1}^{4}\left[1-\exp \left(-0.002337\left(\tau_{1}^{T}\right)^{3}\right)\right]
\end{aligned}
$$

Account for Hydrogen Bonding

SSCED Model (Simplified Separation of Cohesive Energy Density)

$$
\begin{gathered}
G^{E}=V \Phi_{1} \Phi_{2}\left[\left(\delta_{2}^{\prime}-\delta_{1}^{\prime}\right)^{2}+2 k_{12} \delta_{2}^{\prime} \delta_{1}^{\prime}\right] \\
R T \ln \gamma_{k}=V_{k}\left(1-\Phi_{k}\right)^{2}\left[\left(\delta_{2}^{\prime}-\delta_{1}^{\prime}\right)^{2}+2 k_{12} \delta_{2}^{\prime} \delta_{1}^{\prime}\right] \\
\left(\delta_{i}^{\prime}\right)^{2}=\delta_{i}^{2}-2 \alpha_{i} \beta_{i} \\
k_{12}=\frac{\left(\alpha_{2}-\alpha_{1}\right)\left(\beta_{2}-\beta_{1}\right)}{4 \delta_{2}^{\prime} \delta_{1}}
\end{gathered}
$$

Local Clustering Models

Table 13.1. Nomenclature for Local Composition Variables

Composition around a " $1 "$ Molecule	Composition around a "2" Molecule
x_{21} - mole fraction of " 2 's" around " 1 "	x_{12} - mole fraction of " 1 's" around " 2 "
$x_{11}-$ mole fraction of " 1 's" around " $1 "$	$x_{22}-$ mole fraction of " 2 's" around " $2 "$
local mole balance, $x_{11}+x_{21}=1$	local mole balance, $x_{22}+x_{12}=1$

$$
\begin{array}{rr}
\frac{x_{21}}{x_{11}}=\frac{x_{2}}{x_{1}} \Omega_{21} & \text { if } \Omega_{12}=\Omega_{21}=1, \text { the solution is random } \\
\frac{x_{12}}{x_{22}}=\frac{x_{1}}{x_{2}} \Omega_{12} & =\frac{x_{1}}{x_{1}+x_{2} \Omega_{21}}
\end{array} \quad x_{21}=\frac{x_{2} \Omega_{21}}{x_{1}+x_{2} \Omega_{21}}, ~ x_{22}=\frac{x_{2}}{x_{1} \Omega_{12}+x_{2}} \quad x_{12}=\frac{x_{1} \Omega_{12}}{x_{1} \Omega_{12}+x_{2}}
$$

Local Clustering Models

$$
\begin{gathered}
\left(M-M^{i g}\right)=x_{1}\left(M-M^{i g}\right)^{(1)}+x_{2}\left(M-M^{i g}\right)^{(2)} \\
U-U^{i g}=\frac{N_{A}}{2}\left[x_{1} N_{c, 1}\left(x_{11} \varepsilon_{11}+x_{21} \varepsilon_{21}\right)+x_{2} N_{c, 2}\left(x_{12} \varepsilon_{12}+x_{22} \varepsilon_{22}\right)\right]
\end{gathered}
$$

$N_{c, j}$ is the coordination number
$\left(U-U^{i g}\right)^{(1)}=\frac{N_{A}}{2} N_{c, 1}\left(x_{11} \varepsilon_{11}+x_{21} \varepsilon_{21}\right)$ and $\left(U-U^{i g}\right)^{(2)}=\frac{N_{A}}{2} N_{c, 2}\left(x_{12} \varepsilon_{12}+x_{22} \varepsilon_{22}\right)$
For Pure components
$\left(U-U^{i g}\right)^{i s}=x_{1}\left(U-U^{i g}\right)_{\text {pure } 1}+x_{2}\left(U-U^{i g}\right)_{p u r e 2}=\frac{N_{A}}{2}\left[x_{1} N_{c, 1} \varepsilon_{11}+x_{2} N_{c, 2} \varepsilon_{22}\right]$
$U^{E}=U-U^{i s}=\frac{N_{A}}{2}\left[x_{1} N_{c, 1}\left(\left(x_{11} \varepsilon_{11}+x_{21} \varepsilon_{21}\right)-\varepsilon_{11}\right)+x_{2} N_{c, 2}\left(\left(x_{12} \varepsilon_{12}+x_{22} \varepsilon_{22}\right)-\varepsilon_{22}\right)\right]$

Local Clustering Models

$$
\begin{gathered}
U^{E}=U-U^{i s}=\frac{N_{A}}{2}\left[x_{1} N_{c, 1}\left(\left(x_{11} \varepsilon_{11}+x_{21} \varepsilon_{21}\right)-\varepsilon_{11}\right)+x_{2} N_{c, 2}\left(\left(x_{12} \varepsilon_{12}+x_{22} \varepsilon_{22}\right)-\varepsilon_{22}\right)\right] \\
\left(x_{11}-1\right) \varepsilon_{11}=-x_{21} \varepsilon_{11} \\
U^{E}=\frac{N_{A}}{2}\left[x_{1} x_{21} N_{c, 1}\left(\varepsilon_{21}-\varepsilon_{11}\right)+x_{2} x_{12} N_{c, 2}\left(\varepsilon_{12}-\varepsilon_{22}\right)\right] \\
x_{21}=\frac{x_{2} \Omega_{21}}{x_{1}+x_{2} \Omega_{21}} \\
U^{E}=\frac{N_{A}}{2}\left[\frac{x_{1} x_{2} \Omega_{21} N_{c, 1}\left(\varepsilon_{21}-\varepsilon_{11}\right)}{x_{1}+x_{2} \Omega_{21}}+\frac{x_{2} x_{1} \Omega_{12} N_{c, 2}\left(\varepsilon_{12}-\varepsilon_{22}\right)}{x_{1} \Omega_{12}+x_{2}}\right]
\end{gathered}
$$

To obtain Helmholz rree energy use $\int_{\infty}^{T} d\left(\frac{A^{E}}{R T}\right)=\frac{A^{E}}{R T}-\left.\frac{A^{E}}{R T}\right|_{\infty}=-\int_{\infty}^{T} \frac{U^{E}}{R T^{E}} d T$
Need an expression for Ω as a function of $\frac{x_{21}=\frac{x_{2}}{x_{11}} \Omega_{21}}{x_{1}}$ temperature

$$
\frac{x_{12}}{x_{22}}=\frac{x_{1}}{x_{2}} \Omega_{12}
$$

Example 6.7. The relation between Helmholtz energy and internal energy
Express the following in terms of U, H, S, G, and their derivatives: $(\partial(A / R T) / \partial T)_{V}$.

Solution

Applying the product rule,

$$
\left(\frac{\partial(A / R T)}{\partial T}\right)_{V}=\frac{1}{R T}\left(\frac{\partial A}{\partial T}\right)_{V}-\frac{A}{R T^{2}}
$$

Applying Eqn. 6.6 and the definition of A,

$$
\left(\frac{\partial(A / R T)}{\partial T}\right)_{V}=\frac{-S}{R T}-\frac{(U-T S)}{R T^{2}}=\frac{-U}{R T^{2}}
$$

Rearranging, and introducing a common definition $\beta \equiv 1 / k T$,

$$
\frac{U}{R T}=\left(-\frac{T \partial(A / R T)}{\partial T}\right)_{V}=\left(\frac{\beta \partial(A / R T)}{\partial \beta}\right)_{V}
$$

Wilson's Equation Temperature dependence of Ω

$$
\begin{aligned}
\Omega_{i j}= & \Lambda_{j i}=\frac{V_{i}}{V_{j}} \exp \left(\frac{-N_{A} N_{c, j}\left(\varepsilon_{i j}-\varepsilon_{j j}\right)}{2 R T}\right)=\frac{V_{i}}{V_{j}} \exp \left(\frac{-A_{j i}}{R T}\right) \\
\text { Temperature dependence of } \Omega & \begin{array}{c}
\frac{x_{21}}{x_{11}}=\frac{x_{2} \Omega_{21}}{x_{1}} \\
\frac{x_{12}}{x_{22}}=\frac{x_{1}}{x_{2} \Omega_{12}}
\end{array}
\end{aligned}
$$

$$
\frac{A^{E}}{R T}=-x_{1} \ln \left(\Phi_{1}+\Phi_{2} \exp \left(-A_{12} / R T\right)\right)-x_{2} \ln \left(\Phi_{1} \exp \left(-A_{21} / R T\right)+\Phi_{2}\right)+\left.\frac{A^{E}}{R T}\right|_{\infty}
$$

Two activation energies 1 around 2 and 2 around 1

$$
\text { Assume } \mathrm{G} \sim \mathrm{~A} \text { (PV is insignificant) }
$$

Break G into a residual (energetic) contribution that vanishes at $\mathrm{T}=>\infty$ and a combinatorial (size and shape) contribution

$$
\frac{\text { Wilson's Equation Temperature dependence of } \Omega}{A^{E}}=-x_{1} \ln \left(\Phi_{1}+\Phi_{2} \exp \left(-A_{12} / R T\right)\right)-x_{2} \ln \left(\Phi_{1} \exp \left(-A_{21} / R T\right)+\Phi_{2}\right)+\left.\frac{A^{E}}{R T}\right|_{\infty}
$$

Two activation energies 1 around 2 and 2 around 1
Assume $\mathrm{G} \sim \mathrm{A}$ (PV is insignificant)

Break G into a residual (energetic) contribution that vanishes at $T=>\infty$ and a combinatorial (size and shape) contribution

$$
\begin{gathered}
\left(G^{E / R T}\right)^{R E S}=-x_{1} \ln \left(\Phi_{1}+\Phi_{2} \exp \left(-A_{12} / R T\right)\right)-x_{2} \ln \left(\Phi_{1} \exp \left(-A_{21} / R T\right)+\Phi_{2}\right) \\
G^{E} /\left.(R T)\right|_{\infty}=\left(G^{E} / R T\right)^{\operatorname{COMB}}=x_{1} \ln \left(\Phi_{1} / x_{1}\right)+x_{2} \ln \left(\Phi_{2} / x_{2}\right)
\end{gathered}
$$

Use Flory's expression for the combinatorial contribution

Wilson's Equation Temperature dependence of Ω

$$
\begin{gathered}
\frac{G^{E}}{R T}=-x_{1} \ln \left(\Phi_{1}+\Phi_{2} \exp \left(\frac{-A_{12}}{R T}\right)\right)-x_{2} \ln \left(\Phi_{1} \exp \left(\frac{-A_{21}}{R T}\right)+\Phi_{2}\right)+x_{1} \ln \frac{\Phi_{1}}{x_{1}}+x_{2} \ln \frac{\Phi_{2}}{x_{2}} \\
\frac{G^{E}}{R T}=-x_{1} \ln \left(x_{1}+x_{2} \Lambda_{12}\right)-x_{2} \ln \left(x_{1} \Lambda_{21}+x_{2}\right) \\
\Omega_{i j}=\Lambda_{j i}=\frac{V_{i}}{V_{j}} \exp \left(\frac{-A_{j i}}{R T}\right) \\
\ln \gamma_{1}=-\ln \left(x_{1}+x_{2} \Lambda_{12}\right)+x_{2}\left(\frac{\Lambda_{12}}{x_{1}+x_{2} \Lambda_{12}}-\frac{\Lambda_{21}}{x_{1} \Lambda_{21}+x_{2}}\right) \quad \ln \gamma_{2}=-\ln \left(x_{1} \Lambda_{21}+x_{2}\right)-x_{1}\left(\frac{\Lambda_{12}}{x_{1}+x_{2} \Lambda_{12}}-\frac{\Lambda_{21}}{x_{1} \Lambda_{21}+x_{2}}\right) \\
\Lambda_{12}=\frac{V_{2}}{V_{1}} \exp \left(\frac{-A_{12}}{R T}\right) \quad \Lambda_{21}=\frac{V_{1}}{V_{2}} \exp \left(\frac{-A_{21}}{R T}\right)
\end{gathered}
$$

Non-Random Two Liquid Model (NRTL)

$\mathrm{G}=\mathrm{U}+\mathrm{PV}-$ ST if you ignore PV and ST and say G $\sim \mathrm{U}$ then an integration isn't needed $G^{E}=U^{E}=\frac{N_{A}}{2}\left[\frac{x_{1} x_{2} \Omega_{21} N_{c, 1}\left(\varepsilon_{21}-\varepsilon_{11}\right)}{x_{1}+x_{2} \Omega_{21}}+\frac{x_{2} x_{1} \Omega_{12} N_{c, 2}\left(\varepsilon_{12}-\varepsilon_{22}\right)}{x_{1} \Omega_{12}+x_{2}}\right]$
$N_{c, 1}=N_{c, 2}=2 ; \tau_{i j}=\frac{N_{A} N_{c, j}\left(\varepsilon_{i j}-\varepsilon_{j j}\right)}{2 R T}=\frac{\left(g_{i j}-g_{j j}\right)}{R T}=\frac{\Delta g_{i j}}{R T}$
$\Omega_{i j}=G_{i j}=\exp \left(\frac{-\alpha_{i j} N_{A} N_{c, j}\left(\varepsilon_{i j}-\varepsilon_{i j}\right)}{2 R T}\right)=\exp \left(-\alpha_{i j} \tau_{i j}\right) ; \tau_{i i}=0 ; G_{i i}=1 ; g_{i j}=g_{j i}$

$$
\frac{G^{E}}{R T}=x_{1} x_{2}\left[\frac{\tau_{12} G_{12}}{x_{1} G_{12}+x_{2}}+\frac{\tau_{21} G_{21}}{x_{1}+x_{2} G_{21}}\right] \quad G_{i j}=\exp \left(-\alpha_{i j} \tau_{i j}\right) \quad \tau_{i j}=\frac{\Delta g_{i j}}{R T}
$$

$$
\ln \gamma_{1}=x_{2}^{2}\left[\frac{\tau_{12} G_{12}}{\left(x_{1} G_{12}+x_{2}\right)^{2}}+\tau_{21}\left(\frac{G_{21}}{x_{1}+x_{2} G_{21}}\right)^{2}\right] \quad \ln \gamma_{2}=x_{1}^{2}\left[\frac{\tau_{21} G_{21}}{\left(x_{1}+x_{2} G_{21}\right)^{2}}+\tau_{12}\left(\frac{G_{21}}{x_{1} G_{12}+x_{2}}\right)^{2}\right]
$$

Universal Quasi-Chemical Model (UNIQUAC)

Temperature dependence of Ω depends on surface area rather than volume Interactions occur at surfaces $\mathrm{q}_{\mathrm{i}} \sim$ surface area of component " i "

$$
\left(\frac{G^{E}}{R T}\right)^{C O M B}=\left(x_{1} \ln \frac{\Phi_{1}}{x_{1}}+x_{2} \ln \frac{\Phi_{2}}{x_{2}}\right)-5\left[q_{1} x_{1} \ln \left(\frac{\Phi_{1}}{\theta_{1}}\right)+q_{2} x_{2} \ln \left(\frac{\Phi_{2}}{\theta_{2}}\right)\right]
$$

Last term accounts for non-spherical surface area effects on mixing (branched chains)

$$
\begin{aligned}
& \Omega_{i j}=\frac{q_{i}}{q_{j}} \exp \left(\frac{-N_{A} z\left(\varepsilon_{i j}-\varepsilon_{i j}\right)}{2 R T}\right)=\frac{q_{i}}{q_{j}} \exp \left(\frac{-a_{i j}}{T}\right)=\frac{q_{i}}{q_{j}} \tau_{i j}=\frac{q_{i}}{q_{j}} \exp \left(\frac{-a_{i j}}{T}\right) \\
& A^{E} /(R T)=-x_{1} q_{1} \ln \left(\theta_{1}+\theta_{2} \tau_{21}\right)-x_{2} q_{2} \ln \left(\theta_{1} \tau_{12}+\theta_{2}\right)+A^{E} /\left.(R T)\right|_{\infty} \\
& \tau_{i j}=\exp \left(-a_{i j} / T\right) \quad \theta_{i}=x_{i} q_{i} /\left(x_{1} q_{1}+x_{2} q_{2}\right) \text { surface Area Fraction } \\
& \left(G^{E} /(R T)\right)^{R E S}=-x_{1} q_{1} \ln \left(\theta_{1}+\theta_{2} \tau_{21}\right)-x_{2} q_{2} \ln \left(\theta_{1} \tau_{12}+\theta_{2}\right) \\
& G^{E} /\left.(R T)\right|_{\infty}=\left(G^{E / R T}\right)^{\operatorname{COMB}}=x_{1} \ln \left(\Phi_{1} / x_{1}\right)+x_{2} \ln \left(\Phi_{2} / x_{2}\right)
\end{aligned}
$$

Guggenheim Modification to Universal Quasi-Chemical Model (UNIQUAC)

r is volume ratio, q is surface area ratio Both obtained from group contribution method

$$
r_{j}=\sum_{k} v_{k}^{(j)} R_{k} ; \quad q_{j}=\sum_{k} v_{k}^{(j)} Q_{k}
$$

Main Group	Sub-group	R (rel.vol.)	O(rel.area)	Example
CH2	CH3	0.9011	0.8480	
	CH2	0.6744	0.5400	n-hexane: $4 \mathrm{CH} 2+2 \mathrm{CH} 3$
	CH	0.4469	0.2280	Isobutane: $1 \mathrm{CH}+3 \mathrm{CH} 3$
	C	0.2195	0	Neopentane: 1 $\mathrm{C}+4 \mathrm{CH} 3$
$\mathrm{C}=\mathrm{C}$	CH2=CH	1.3454	1.1760	1-hexene: $1 \mathrm{CH} 2=\mathrm{CH}+3 \mathrm{CH} 2+1 \mathrm{CH} 3$
	$\mathrm{CH}=\mathrm{CH}$	1.1167	0.8670	2-hexene: $1 \mathrm{CH}=\mathrm{CH}+2 \mathrm{CH} 2+2 \mathrm{CH} 3$
	CH2 $=$ C	1.1173	0.9880	
	$\mathrm{CH}=\mathrm{C}$	0.8886	0.6760	
	$\mathrm{C}=\mathrm{C}$	0.6605	0.4850	
ACH	ACH	0.5313	0.4000	Benzene: 6 ACH
	AC	0.3652	0.1200	Benzoic acid: $5 \mathrm{ACH}+1 \mathrm{AC}+1 \mathrm{COOH}$
ACCH2	ACCH3	1.2663	0.9680	Toluene: $5 \mathrm{ACH}+1$ ACCH3
	ACCH2	1.0396	0.6600	Ethylbenzene: $5 \mathrm{ACH}+1 \mathrm{ACCH} 2+1 \mathrm{CH} 2$
	ACCH	0.8121	0.3480	
OH^{6}	OH	1.0000	1.2000	n-propanol: $1 \mathrm{OH}+1 \mathrm{CH} 3+2 \mathrm{CH} 2$
CH3OH	CH3OH	1.4311	1.4320	Methanol is an independent group
water	H2O	0.9200	1.4000	Water is an independent group
furfural	furfural	3.1680	2.484	Furfural is an independent group
DOH	$(\mathrm{CH} 2 \mathrm{OH})^{2}$	2.4088	2.2480	Ethylene glycol is an independent group
ACOH	ACOH	0.8952	0.6800	Phenol: $1 \mathrm{ACOH}+5 \mathrm{ACH}$
CH2CO	CH3CO	1.6724	1.4880	Dimethylketone: $1 \mathrm{CH} 3 \mathrm{CO}+1 \mathrm{CH} 3$ Methylethylketone: $1 \mathrm{CH} 3 \mathrm{CO}+1 \mathrm{CH} 2+1 \mathrm{CH} 3$
	CH2CO	1.4457	1.1800	Diethylketone: $1 \mathrm{CH} 2 \mathrm{CO}+2 \mathrm{CH} 3+1 \mathrm{CH} 2$
CHO	CHO	0.9980	0.9480	Acetaldehyde: $1 \mathrm{CHO}+1 \mathrm{CH} 3$
CCOO	CH3COO	1.9031	1.7280	Methyl acetate: $1 \mathrm{CH} 3 \mathrm{COO}+1 \mathrm{CH} 3$
	CH2COO	1.6764	1.4200	Methyl propanate: $1 \mathrm{CH} 2 \mathrm{COO}+2 \mathrm{CH} 3$
COOH	COOH	1.3013	1.2240	Benzoic acid: $5 \mathrm{ACH}+1 \mathrm{AC}+1 \mathrm{COOH}$

Universal Functional Activity Coefficient Model (UNIFAC)

$$
\ln \gamma_{k}=\ln \gamma_{k}^{C O M B}+\ln \gamma_{k}^{R E S}
$$

Combinatorial term same as UNIQUAC (surface area based)
$\ln \gamma_{k}^{\operatorname{COMB}}=\ln \left(\Phi_{k} / x_{k}\right)+\left[1-\Phi_{k} / x_{k}\right]-5 q_{k}\left[\ln \left(\Phi_{k} / \theta_{k}\right)+\left(1-\Phi_{k} / \theta_{k}\right)\right]$
Residual term involves group contribution rather than whole molecule
Table 13.3. Selected VLE Interaction Energies \mathbf{a}_{ij} for the UNIFAC Equation in Units of
Kelvin

Main Group, i	$\begin{aligned} & \mathrm{CH} 2 \\ & j=1 \end{aligned}$	$\begin{array}{l\|} \mathrm{ACH} \\ j=3 \end{array}$	$\begin{gathered} \mathrm{ACCH} 2 \\ j=4 \end{gathered}$	$\begin{aligned} & \mathrm{OH} \\ & j=5 \end{aligned}$	$\begin{gathered} \mathrm{CH} 3 \mathrm{OH} \\ j=6 \end{gathered}$	$\begin{aligned} & \text { water } \\ & j=7 \end{aligned}$	$\begin{array}{c\|} \mathrm{ACOH} \\ j=8 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{CH} 2 \mathrm{CO} \\ j=9 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{CHO} \\ j=10 \end{array}$	$\begin{aligned} & \mathrm{COOH} \\ & j=20 \end{aligned}$
1,CH2	--.	61.13	76.5	986.5	697.2	1318	1333	476.4	677	663.5
3,ACH	-11.12	---	167	636.1	637.3	903.8	1329	25.77	347.3	537.4
4,ACCH2	-69.7	-146.8	---	803.2	603.3	5695	884.9	-52.1	586.8	872.3
5,OH	156.4	89.6	25.82	---	-137.1	353.5	-259.7	84	-203.6	199
6,CH3OH	16.51	-50	-44.5	249.1	---	-181	-101.7	23.39	306.4	-202.0
7,water	300	362.3	377.6	-229.1	289.6	---	324.5	-195.4	-116.0	-14.09
$8, \mathrm{ACOH}$	275.8	25.34	244.2	-451.6	-265.2	-601.8	---	-356.1	-271.1	408.9
9, CH 2 CO	26.76	140.1	365.8	164.5	108.7	472.5	-133.1	---	-37.36	669.4
10,CHO	505.7	23.39	106.0	529	-340.2	480.8	-155.6	128	---	497.5
$20, \mathrm{COOH}$	315.3	62.32	89.86	-151	339.8	-66.17	-11.00	-297.8	-165.5	---

Solutions with multiple sub-lattices

$$
\mathrm{NaCl}-\mathrm{KBr} \text { or } \text { Spinels } \mathrm{AB}_{2} \mathrm{O}_{4}
$$

The spinel structure is formulated $M M_{2}^{\prime} X_{4}$, where M and M^{\prime} are tetrahedrally and octahedrally coordinated cations, respectively, and X is an anion (typically
O or F). The structure is named after the mineral $\mathrm{MgAl}_{2} \mathrm{O}_{4}$, and oxice spinels have the general formula $\mathrm{AB}_{2} \mathrm{O}_{4}$.

Cation sublattice
Anion sublattice

Octahedral sublattice
Tetrahedral sublattice

Disorder in the placement of $\mathrm{Na}+$ and K+
And Cl - and Br - leads to entropy

Solutions with multiple sub-lattices

Ideal Solution Model (Temkin Model)

Cations surrounded by anions in crystal and in the melt
Quasi-lattice approach
Random mixing of cations and anions on their respective sub-lattices
Consider a system AC and BC

$$
\begin{gathered}
N_{\mathrm{A}^{+}}+N_{\mathrm{B}^{+}}=N_{\mathrm{C}^{-}}=N \\
\Delta_{\operatorname{mix}} G_{\mathrm{m}}=-R T \ln \left(\frac{N!}{N_{\mathrm{A}^{+}}!N_{B^{\prime}}!}\right)=R T\left[X_{\mathrm{A}^{+}} \ln X_{\mathrm{A}^{+}}+X_{\mathrm{B}^{+}} \ln X_{\mathrm{B}^{+}}\right] \\
X_{\mathrm{B}^{+}}=1-X_{\mathrm{A}^{+}}=\frac{N_{\mathrm{A}^{+}}}{N_{\mathrm{A}^{+}}+N_{\mathrm{B}^{+}}} \\
\Delta_{\operatorname{mix}} S_{\mathrm{m}}=-R\left[X_{\mathrm{A}^{+}} \ln X_{\mathrm{A}^{+}}+X_{\mathrm{B}^{+}} \ln X_{\mathrm{B}^{+}}\right]
\end{gathered}
$$

Solutions with multiple sub-lattices

Regular Solution Model (Temkin Model)

Need to account for next nearest neighbor interactions since nearest neighbor interactions do not change, that is $\mathrm{Na}+\mathrm{Cl}$ - interactions, you need $\mathrm{Na}+\mathrm{K}+$ interactions There are $1 / 2 \mathrm{zN}$ nearest neighbor as well as next nearest neighbor interactions

$$
\begin{aligned}
U= & N_{\mathrm{A}^{+} \mathrm{A}^{+}} u_{\mathrm{A}^{+} \mathrm{A}^{+}}+N_{\mathrm{B}^{+} \mathrm{B}^{+}} u_{\mathrm{B}^{+} \mathrm{B}^{+}}+N_{\mathrm{A}^{+} \mathrm{B}^{+}} u_{\mathrm{A}^{+} \mathrm{B}^{+}}+N_{\mathrm{C}^{-} \mathrm{C}^{-}} u_{\mathrm{C}^{-} \mathrm{C}^{-}} \\
& +N_{\mathrm{A}^{+} \mathrm{C}^{-}} u_{\mathrm{A}^{+} \mathrm{C}^{-}}+N_{\mathrm{B}^{+} \mathrm{C}^{-}} u_{\mathrm{B}^{+} \mathrm{C}^{-}} \\
U= & \frac{1}{2} z\left[N_{\mathrm{A}^{+}} u_{\mathrm{A}^{+} \mathrm{A}^{+}}+N_{\mathrm{B}^{+}} u_{\mathrm{B}^{+} \mathrm{B}^{+}}+N u_{\mathrm{C}^{-} \mathrm{C}^{-}}+N_{\mathrm{A}^{+}} u_{\mathrm{A}^{+} \mathrm{C}^{-}}+N_{\mathrm{B}^{+}} u_{\mathrm{B}^{+} \mathrm{C}^{-}}\right] \\
& +N_{\mathrm{A}^{+} \mathrm{B}^{+}}\left[u_{\mathrm{A}^{+} \mathrm{B}^{+}}-\frac{1}{2}\left(u_{\mathrm{A}^{+} \mathrm{A}^{+}}+u_{\mathrm{B}^{+} \mathrm{B}^{+}}\right)\right]
\end{aligned}
$$

$$
\begin{array}{rlr}
\text { Same as for regular solution } & U_{\mathrm{AC}}=\frac{1}{2} z N_{\mathrm{A}}\left[u_{\mathrm{A}^{+} \mathrm{A}^{+}}+u_{\mathrm{C}^{-} \mathrm{C}^{-}}+u_{\mathrm{A}^{+} \mathrm{C}^{-}}\right] \\
\omega_{\mathrm{A}^{+} \mathrm{B}^{+}}=u_{\mathrm{A}^{+} \mathrm{B}^{+}}-\frac{1}{2}\left(u_{\mathrm{A}^{+} \mathrm{A}^{+}}+u_{\mathrm{B}^{+} \mathrm{B}^{+}}\right) & U_{\mathrm{BC}}=\frac{1}{2} z N_{\mathrm{B}}\left[u_{\mathrm{B}^{+} \mathrm{B}^{+}}+u_{\mathrm{C}^{-} \mathrm{C}^{-}}+u_{\mathrm{B}^{+} \mathrm{C}^{-}}\right] \\
U & =U_{\mathrm{AC}}+U_{\mathrm{BC}}+N_{\mathrm{A}^{+} \mathrm{B}^{+}} \omega_{\mathrm{A}^{+} \mathrm{B}^{+}} &
\end{array}
$$

Solutions with multiple sub-lattices

$$
\begin{aligned}
& N_{\mathrm{AB}}=\frac{1}{2} z N 2 X_{\mathrm{A}^{+}} X_{\mathrm{B}^{+}}=z\left(\frac{N_{\mathrm{A}^{+}} N_{\mathrm{B}^{+}}}{N}\right) \quad \text { Same as for regular solution } \\
& Z=\frac{N!}{N_{\mathrm{A}^{+}}!N_{\mathrm{B}^{+}}!} \exp \left[-\frac{\left[U_{\mathrm{AC}}+U_{\mathrm{BC}}+\left(z N_{\mathrm{A}^{+}} N_{\mathrm{B}^{+}} / N\right) \omega_{\mathrm{A}^{+} \mathrm{B}^{+}}\right]}{k_{\mathrm{B}} T}\right] \\
& G \approx A=-k_{\mathrm{B}} T \ln \left[\frac{N!}{N_{\mathrm{A}^{+}}!N_{\mathrm{B}^{+}}!}\right]+U_{\mathrm{AC}}+U_{\mathrm{BC}}+\frac{z N_{\mathrm{A}^{+}} N_{\mathrm{B}^{+}}}{N} \omega_{\mathrm{A}^{+} \mathrm{B}^{+}} \\
& \Delta_{\text {mix }} G_{\mathrm{m}}=R T\left[X_{\mathrm{A}^{+}} \ln X_{\mathrm{A}^{+}}+X_{\mathrm{B}^{+}} \ln X_{\mathrm{B}^{+}}\right]+\Omega_{\mathrm{A}^{+} \mathrm{B}^{+}} X_{\mathrm{A}^{+}} X_{\mathrm{B}^{+}} \\
& \Omega_{\mathrm{A}^{+} \mathrm{B}^{+}}=z L \omega_{\mathrm{A}^{+} \mathrm{B}^{+}} \\
& \Delta_{\text {mix }} H_{\mathrm{m}} \approx \Delta_{\text {mix }} U_{\mathrm{m}}=\Omega_{\mathrm{A}^{+} \mathrm{B}^{+}} X_{\mathrm{A}^{+}} X_{\mathrm{B}^{+}} \\
& \mu_{\mathrm{AC}}-\mu_{\mathrm{AC}}^{\mathrm{o}}=R T \ln X_{\mathrm{A}^{+}}+\Omega_{\mathrm{A}^{+} \mathrm{B}^{+}} X_{\mathrm{B}^{+}}^{2} \\
& =R T \ln x_{\mathrm{AC}}+\Omega_{\mathrm{A}^{+} \mathrm{B}^{+}} x_{\mathrm{BC}}^{2}
\end{aligned}
$$

Order-disorder systems

$\sigma=$ Order parameter a number that goes from 0 for disordered to 1 for ordered

Convergent ordering occurs when two lattice sites are equivalent in the disordered state and crystallographically distinct in the ordered state
This occurs in solid solutions
Bragg and Williams
Solution of A and B with lattice sites a and b
AB forms at low temperatures A at a sites is $1 / 2(1+\sigma)$
$\mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}}=2 \mathrm{~N} \quad \mathrm{zN}$ interactions
Disordered State $\quad U=N_{\mathrm{AA}^{u}}{ }_{\mathrm{AA}}+N_{\mathrm{BB}^{u}}{ }_{\mathrm{BB}}+N_{\mathrm{AB}}{ }^{u} \mathrm{AB} \quad$ Regular Solution

$$
\begin{aligned}
& N_{\mathrm{AA}}=\mathrm{z} N\left[\frac{1}{2}(1-\sigma) \frac{1}{2}(1+\sigma)\right]=\mathrm{z} N\left[\frac{1}{4}\left(1-\sigma^{2}\right)\right] \quad \sigma=\text { Order parameter } \\
& H(\sigma) \approx U(\sigma)=z N\left[\frac{1}{4}\left(1-\sigma^{2}\right) u_{\mathrm{AA}}+\frac{1}{4}\left(1-\sigma^{2}\right) u_{\mathrm{BB}}+\frac{1}{2}\left(1+\sigma^{2}\right) u_{\mathrm{AB}}\right] \\
& \Delta_{\text {dis }} H=H(\sigma)-H(\sigma=1)=H(\sigma)-z N u_{\mathrm{AB}} \\
&=\frac{1}{4} z N\left[\left(1-\sigma^{2}\right)\left(u_{\mathrm{AA}}+u_{\mathrm{BB}}-2 u_{\mathrm{AB}}\right)\right]=\frac{1}{2} z N \omega_{\mathrm{AB}}\left(1-\sigma^{2}\right)
\end{aligned}
$$

Order-disorder systems

$$
\begin{aligned}
& \text { Disordered State } \quad U=N_{\mathrm{AA}^{u}} \mathrm{AA}+N_{\mathrm{BB}} u_{\mathrm{BB}}+N_{\mathrm{AB}}{ }^{u} \mathrm{AB} \quad \text { Regular Solution } \\
& \mathrm{H}=\mathrm{U}+\mathrm{PV} \quad H(\sigma) \approx U(\sigma)=z N\left[\frac{1}{4}\left(1-\sigma^{2}\right) u_{\mathrm{AA}}+\frac{1}{4}\left(1-\sigma^{2}\right) u_{\mathrm{BB}}+\frac{1}{2}\left(1+\sigma^{2}\right) u_{\mathrm{AB}}\right] \\
& \Delta_{\text {dis }} H=H(\sigma)-H(\sigma=1)=H(\sigma)-z N u_{\mathrm{AB}} \\
& =\frac{1}{4} z N\left[\left(1-\sigma^{2}\right)\left(u_{\mathrm{AA}}+u_{\mathrm{BB}}-2 u_{\mathrm{AB}}\right)\right]=\frac{1}{2} z N \omega_{\mathrm{AB}}\left(1-\sigma^{2}\right) \\
& \Delta_{\text {mix }} S_{\mathrm{a}}=-k_{\mathrm{B}} N\left(\frac{1}{2}(1+\sigma) \ln \left[\frac{1}{2}(1+\sigma)\right]+\frac{1}{2}(1-\sigma) \ln \left[\frac{1}{2}(1-\sigma)\right]\right) \quad \text { Ideal Solution } \\
& \Delta_{\text {dis }} G=\Delta_{\text {dis }} H-T \Delta_{\text {dis }} S=\frac{1}{2} z N \omega_{\mathrm{AB}}\left(1-\sigma^{2}\right)+k_{\mathrm{B}} T N[(1-\sigma) \ln (1-\sigma) \\
& +(1+\sigma) \ln (1+\sigma)-2 \ln 2] \\
& \mathrm{d}\left(\Delta_{\text {mix }} G\right) / \mathrm{d} \sigma=0 \text { which yields } \\
& \ln \frac{1+\sigma}{1-\sigma}=-\frac{\sigma z \omega_{\mathrm{AB}}}{k_{\mathrm{B}} T}=\frac{2 \sigma T_{\mathrm{trs}}}{T}
\end{aligned}
$$

Bragg and Williams

Figure 9.10 Order parameter σ for the Bragg-Williams model as a function of reduced temperature.

$$
\ln \frac{1+\sigma}{1-\sigma}=-\frac{\sigma z \omega_{\mathrm{AB}}}{k_{\mathrm{B}} T}=\frac{2 \sigma T_{\text {trs }}}{T} \quad \text { Second Order Transition }
$$

Order-disorder systems

Non-Convergent ordering occurs when two lattice sites are distinct in the disordered state and distinct in the ordered state
Spinels: One tetrahedral and two octahedral cations $\mathrm{AB}_{2} \mathrm{O}_{4}$ A can be in tetrahedral or octahedral sites
Normal Spinel (A) ${ }^{\text {tetr }}\left(\mathrm{B}_{2}\right)^{\text {octa }} \mathrm{O}_{4}, \quad \mathrm{x}=0$
Inverse Spinel $(B)^{\text {tetr }}(A, B)^{\text {octa }} \mathrm{O}_{4} \quad \mathrm{x}=1$
Random Spinel $\mathrm{A}_{1-x} \mathrm{~B}_{x}\left[\mathrm{~A}_{x} \mathrm{~B}_{2-x}\right] \mathrm{O}_{4}, \quad \mathrm{x}=2 / 3$

$$
\begin{gathered}
\Delta_{\text {config }} S_{\mathrm{m}}=-R\left[x \ln x+(1-x) \ln (1-x)+x \ln \left(\frac{x}{2}\right)+(2-x) \ln \left(1-\frac{x}{2}\right)\right] \\
\mathrm{S}=0 \text { for } \mathrm{x}=0 \quad \text { Regular Spinel }
\end{gathered}
$$

$$
\Delta_{\text {config }} S_{\mathrm{m}}=-R\left[x \ln x+(1-x) \ln (1-x)+x \ln \left(\frac{x}{2}\right)+(2-x) \ln \left(1-\frac{x}{2}\right)\right]
$$

Abstract

Ordered and Regular Spinels disorder at high temperature to increase entropy

Figure 9.11 (a) Configurational entropy of a spinel $\mathrm{AB}_{2} \mathrm{O}_{4}$ as a function of the composition parameter, x. (b) Degree of disorder, x, as a function of temperature for selected values of $\Delta_{\text {dis }} H$.

For a Normal Spinel the disordering process is:

$$
\begin{gathered}
(\mathrm{A})^{\text {tetr }}+(\mathrm{B})^{\text {octa }}=(\mathrm{A})^{\text {octa }}+(\mathrm{B})^{\mathrm{tetr}} \\
\Delta_{\text {dis }} G=\Delta_{\text {dis }} H-T \Delta_{\text {dis }} S=-R T \ln K \\
K=\frac{x^{2}}{(1-x)(2-x)}
\end{gathered}
$$

Non-stoichiometric Compounds

Mass-action law treatment of defect equilibria

$$
\mathrm{ABO}_{3-\delta} . \quad \text { Perovskite type oxide }
$$

Three sublattices
A 12 coordination
B 6 coordination number

A open circles 12 Black B 6 Grey O O grey circles represent O atoms and open circles represent the A atom,

O and vacancies on the O lattice randomly arranged
B atoms are reduced by oxygen vacancies
$2 \mathrm{O}_{\mathrm{O}}^{x}+4 \mathrm{~B}_{\mathrm{B}}^{x}=2 \mathrm{~V}_{\mathrm{O}}^{\prime \prime}+4 \mathrm{~B}_{\mathrm{B}}^{\prime}+\mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{O}_{\mathrm{O}}^{x}$ and $\mathrm{V}_{\mathrm{O}}^{\prime \prime}$ are an oxygen ion and an oxygen vacancy
$K=\frac{\left[\mathrm{V}_{\mathrm{O}}^{-}\right]^{2}\left[\mathrm{~B}_{\mathrm{B}}^{\prime}\right]^{4}}{\left[\mathrm{O}_{\mathrm{O}}^{x}\right]^{2}\left[\mathrm{~B}_{\mathrm{B}}^{x}\right]^{4}} \cdot p \mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{B}_{\mathrm{B}}^{x}$ and $\mathrm{B}_{\mathrm{B}}^{\prime}$ are trivalent and divalent B -ions
$\Delta G^{\circ}=\Delta H^{0}-T \Delta S^{0}=-R T \ln K$
$\log p \mathrm{O}_{2}(\mathrm{~g})=\log K+4[\log (1-2 \delta)-\log (2 \delta)]-2 \log \left(\frac{\delta}{3-\delta}\right)$

Non-stoichiometric Compounds

Solid Solution Approach

$$
\begin{aligned}
Z=\sum_{\mathrm{c}} \sum_{\mathrm{s}} \exp \left(-\frac{H_{\mathrm{c}, \mathrm{~s}}}{k_{\mathrm{B}} T}\right)=\sum_{\mathrm{c}} \exp \left(-\frac{G_{\mathrm{c}}}{k_{\mathrm{B}} T}\right) \quad \begin{array}{l}
\text { Sum over all vibrational states "s" } \\
\text { Over all configurations "c" }
\end{array} \\
\Delta_{\mathrm{f}} G=-k_{\mathrm{B}} T \ln Z=-k_{\mathrm{B}} T \ln \sum_{\mathrm{c}} g_{\mathrm{c}} \exp \left(-\frac{\Delta_{\mathrm{f}} G_{\mathrm{c}}}{k_{\mathrm{B}} T}\right) \quad \begin{array}{l}
\text { Configurations with degeneracy } \mathrm{g}_{\mathrm{c}} \text { and } \\
\text { Gibbs energy of formation } \Delta_{\mathrm{f}} \mathrm{G}_{\mathrm{c}}
\end{array}
\end{aligned}
$$

Proposition: A perovskite ABO_{3-8} is made up of ABO_{3} and $\mathrm{ABO}_{2.5}$ in an ideal solution (no defect defect interactions)

$$
\begin{gathered}
\Delta_{\mathrm{f}} G_{\mathrm{c}}\left(\mathrm{ABO}_{3-\delta}\right)=(1-2 \delta) \Delta_{\mathrm{f}} G_{\mathrm{m}}^{\mathrm{o}}\left(\mathrm{ABO}_{3}\right)+2 \delta \Delta_{\mathrm{f}} G_{\mathrm{m}}^{\mathrm{o}}\left(\mathrm{ABO}_{2.5}\right) \\
g_{\mathrm{c}}=\frac{(3 N)!}{N_{\mathrm{V}_{\mathrm{o}}}!\left(3 N-N_{\mathrm{V}_{\mathrm{O}}}\right)!} \cdot \frac{N!}{N_{\mathrm{B}^{2+}}!\left(N-N_{\mathrm{B}^{2+}}\right)!} \quad \begin{array}{l}
N \text { is the number of B atoms } \\
N_{\mathrm{V}_{\mathrm{O}}} \text { is the number of oxygen vacancies } \\
N_{\mathrm{B}^{2+}} \text { is the number of B }
\end{array} \\
\Delta_{\mathrm{f}}^{2+} G_{\mathrm{m}}\left(\mathrm{ABO}_{3-\delta}\right)=(1-2 \delta) \Delta_{\mathrm{f}} G_{\mathrm{m}}^{\mathrm{o}}\left(\mathrm{ABO}_{3}\right)+2 \delta \Delta_{\mathrm{f}} G_{\mathrm{m}}^{\mathrm{o}}\left(\mathrm{ABO}_{2,5}\right) \\
+R T\left[(1-2 \delta) \ln (1-2 \delta)+2 \delta \ln (2 \delta)+\delta \ln \left(\frac{\delta}{3}\right)+(3-\delta) \ln \left(1-\frac{\delta}{3}\right)\right]
\end{gathered}
$$

$$
\begin{aligned}
\log p \mathrm{O}_{2}= & \left(\frac{1}{R T \ln 10}\right)\left[4 \Delta_{\mathrm{f}} G_{\mathrm{m}}^{\mathrm{o}}\left(\mathrm{ABO}_{3}\right)-4 \Delta_{\mathrm{f}} G_{\mathrm{m}}^{\mathrm{o}}\left(\mathrm{ABO}_{2.5}\right)\right] \\
& +4[\log (1-2 \delta)-\log (2 \delta)]-2 \log \left(\frac{\delta}{3-\delta}\right) \\
\log p \mathrm{O}_{2}(\mathrm{~g}) & =\log K+4[\log (1-2 \delta)-\log (2 \delta)]-2 \log \left(\frac{\delta}{3-\delta}\right) \\
\log K & =\left(\frac{1}{R T \ln 10}\right)\left[4 \Delta_{\mathrm{f}} G_{\mathrm{m}}^{\mathrm{o}}\left(\mathrm{ABO}_{3}\right)-4 \Delta_{\mathrm{f}} G_{\mathrm{m}}^{\mathrm{o}}\left(\mathrm{ABO}_{2.5}\right)\right]
\end{aligned}
$$

Figure 9.12 (a) Enthalpy of oxidation of $\mathrm{La}_{1-x} \mathrm{~A}_{x} \mathrm{BO}_{3-\delta}$ as a function of x. Open symbols represents values deduced from non-stoichiometry versus partial pressure isotherms. Closed symbols represent calorimetric values. (b) Comparison of experimental and calculated non-stoichiometry versus partial pressure isotherms [23]. Reproduced by permission of the Royal Society of Chemistry.

